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Abstract. The magnetization and susceptibility of the spin-1 ferromagnetic chain with 
random anisotropy fields has been investigated by Trotter-Sqki decomposition and 
transfer matrix methods. The results indicate a zero temperature magnetization with a 
susceptibility exponent close to the spin wave ‘value of 2. 

The random field anisotropy mould was introduced by Hams, Plischke and 
Zuckerman (HPZ) [l] to describe amorphous magnets which are alloys of rare earths 
and transition metal elements. In this model each spin has a local random easy 2-fold 
axis and is described by the Hamiltonian 

i 

In the above {ni} are random unit vectors denoting the directions of the easy axes and 
Isj} are spins. The original formulation of HPZ was in the language of quantum 
mechanics where {si} are local angular momentum operators. (The actual Hamiltonian 
of HPZ differs in form from 1 as ni was taken as the local axis of quantization.) 
However, investigations have almost exclusively been on the classical analogue of 
equation 1 where {si} have been replaced by classical spins. These investigations have 
been for classical X-Y and Heisenberg spins and finite D ,  and also for the Limit D+ CO 

when the Hamiltonian maps into an equivalent king system. 
Within the classical framework the model of HPZ has had rather a checkered 

history with differing understanding of its critical- properties being current at different 
times. 

In three dimensions early numerical work by Harris and Zobin [2] supported the 
interpretation that for finite D ferromagnetism was destroyed and is replaced by a 
glassy type phase. Subsequent investigation by Harris and Sung [3] using Monte Carlo 
simulation overturned this conclusion with evidence suggesting the stability of the 
ferrpagnetic phase. However, Pelcovits et a1 [4] in work produced at about the same 
time suggested the instability of the ferromagnetic phase in less than four dimensions. 
Other work [SI concluded that the three dimensional system was qausiferromagnetic, 
that is zero ferromagnetic order parameter with infinite correlation length. In ,three 
dimensions numerical work has been done on this model in the limit D+ CO when the 
spins become king like. In this limit large cell renormalition [6] has suggested no 
-ferromagnetism and no quasiferromagnetism. Monte Carlo work [7] indicated spin 
glass type order only. There are also general energy balance arguments suggesting the 
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destruction of ferromagnetism for all D is less than four dimensions [8]. Thus a range 
of suggestions exists. 

Recently Reed [9] has examined this system using Monte Carlo simulation and 
finite size scaling for two component X-Y spins and for both 2-fold and 3-fold 
anisotropy fields and D = J .  The results indicate little difference between the 2-fold 
and 3-fold case. Both systems appeared critical at a temperature close to the transition 
temperature of the pure system and with an exponent Y which again within numerical 
uncertainty is almost identical to the pure system. All this would argue for the 
irrelevance of D at the ferromagnetic transition. No evidence of quasiferromagnetism 
was found for 2 or 3-fold anisotropy. However, the magnetization was not measured 
in this simulation and so it is not possible to be certain about the nature of the low 
temperature state but the evidence argued in favour of ferromagnetism. 

Recently Fisch [lo] has also investigated the problem for 2 and 3-fold anisotropy 
by sophisticated Monte Carlo methods in three dimensions for X-Y spins but in the 
case where D+ m when the system becomes king like. The results of that simulation 
indicated ferromagnetism for 3-fold axes but quasiferromagnetism for 2-fold axes. 

From the above it would be difficult to be certain about the critical properties of 
this model in three dimensions, howeyer, recent evidence would probably indicate the 
survival of ferromagnetism in three dimensions for X-Y spins. 

In two dimensions the picture is perhaps a little clearer following the careful 
renormalization group calculation of Cardy and Ostlund [U]. For general p-fold 
anisotropy and X-Y spins their calculation predicted the irrelevance of the anisotropy 
field for all p 3 3  with the case p =4 being special. Monte Carlo [12] calculation has 
confirmed the overall picture. However for, p = 2  which is outside the domain of 
Cardy and Ostlund’s results, but is the appropriate value for the model of HPZ, Monte 
Carlo simulation indicated the destruction of the Kosterlitz-Thouless phase and the 
existence of a glassy phase. This conclusion has received support €tom other recent 
Monte Carlo simulation [13]. 

Even in one dimension there is room for doubt. For finite D, Serota and Lee [14] 
were unable to find a groundstate with zero magnetization. This result does not quite 
conform to the numerical work of Dickinson and Chudnovsky [15]. However, this 
latter work was done for thermodynamically typical low-energy states which are 
appropriate for comparison with experiment but may not be the true groundstate. 
What can be certain is that in the limit D + m  the model reduces to the one- 
dimensional Ising model with random symmetric bonds and this is certainly not 
ferromagnetic in the groundstate. 

In order to attempt to illuminate the properties of the model of HPZ and also to 
revert to the original quantum nature of the Hamiltonian an investigation has been 
made for the case of spin-1 operators in one dimension for the case J = D .  It is hoped 
that work in one dimension can form a basis for understanding in higher dimensions. 
The quantities studied were the magnetization and the susceptibility. 

The method used for the investigation was the Trotter-Suzuki method 1161 using a 
checkerboard decomposition 1171. This results in the original quantum chain being 
transformed into a 2m x N classical rectangular lattice with four spin interactions in 
alternative rectangles. Here N is the length of the original chain and 2m is the 
dimension in the Trotter direction. This procedure is well known from quantum 
Monte Carlo simulations. However, to avoid the ‘sign’ problem which creates 
difficulties at low temperature this method is not used and the transfer matrix 
approach of Binder and Morgenstem [18] applied instead. This avoids the ‘sign’ 
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Figure 1. Magnetization M against system size Non  a log-log plot. (A) T =0.7J. (0) 
T=0.4J. (*) T=0.31. 

problem. In fact since the Hamiltonian is hermitian rather than just symmetric the 
‘sign’ problem would be worse in this case as the matrix elements would be complex. 

The free energy F was calculated and the magnetization M and susceptibility ,y 
calculated using 

In practice the differentials were calculated using finite differences. 
Results were calculated for system sues ranging from N=50 to N=250 and for 

m = 4,5,6. The error in thermodynamic quantities induced by the methods is believed 
to be a polynomial in (’ITm)’ where Tis the temperature. This restricts the range of 
temperature at which useful results can be obtained to (’lTm)*< 1. This behaviour of 
the error in the thermodynamic function has been checked by plotting the results 
against a linear function of (’ITm)’. The results were as expected; at high temperature 
the goodness of fit parameter was virtually zero, increasing as the temperature is 
lowered as higher-order terms in the polynomial begin to have an effect. To account 
for this and to accommodate the slight mnvex nature of the data the fit was made to a 
quadratic for all temperatures in the range 0 . 3 5  TIJ50.8. 

For each value of N only one realization of the anisotropy field directions was 
used. This was because sample to sample fluctuations were not pronounced and to 
allow all other extrapolations to be done on noiseless data. 

Results for the magnetization are shown in figure 1 as a function of N and for 
varying temperatures. No tendency for M to diminish as N increases is detectable. 



L810 Letter to the Editor 

This is entirely consistent with a first-order transition to a non-zero magnetization at 
T=O. 

The susceptibility has been fitted to the form 

In the range 0.3 s TlJ-cO.8 the values of y all lay in the range 1.978 to 2.187 which is 
entirely consistent with a value of y=2, the spin wave value. 

As with any procedure which is not exact the domain of accuracy of these results 
could always be challenged. In particular it might be suggested that the temperatures 
are not sufficiently low to exhibit the asymptotic behaviour. On the other hand the 
procedure does not have any uncontrollable errors. 

I thank the SERC for their support for this work. 
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